
	

1	
	

HBaaS: Heterogeneous-accelerated
Bioinformatics-as-a-Service	

Final Project Report	

5 May 2015	

Senior Design Group 3
Stevens Institute of Technology	

	

 By	

Dylan Hutchison, Eric Cherin, Xin Li, Hefei Yang 	

“We pledge our honor that we have abided by the Stevens Honor System.”	

	

Advisor Dr. Narayan Ganesan	

Collaborators: Di Ren, Jaroor Modi,
Peiran Guan, Hanyu Jiang	

Sponsor: MIT Lincoln Laboratory and CSAIL	

	

2	
	

Executive Summary 	
Modern applications call for solutions that handle “big data,” datasets that span

multiple machines and cannot fit in main memory, and “big compute,” computation
patterns that tax even the most advanced processors. Bioinformatics is no exception.	

We present HBaaS, Heterogeneous-accelerated Bioinformatics-as-a-Service.
Our platform leverages heterogeneous computer architectures to provide sequence
matching and motif finding as a web service for users of bioinformatics data. We tackle
big data by means of the Accumulo distributed database, and big compute by means of
GPUs. Their integration delivers top-tier performance for our chosen applications.	

	

	

	 	

	

3	
	

Contents	

Section – I: Project Definition and Plan (initial in Fall, refined in Spring).....................................5	 	

I.1 Mission Statement………….…………………………………………………………………………………....………….…….5	 	

I.2 Background……….….…5	 	

I.3 Stakeholder List………......6	 	

I.4 Project Scope and Resources…………………………………………………………………………………………...….7	 	

I.4a Budget………...…...7	 	

I.5 Project Plan…….....8	 	

Section – II: Design, Evaluation & Optimization (initial in Fall, refined in Spring)........................9	 	

II.1 Requirements……….....….9	 	

II.2 Constraints and Assumptions……………………………………………………...……………………………......….10	

II.3 Applicable Codes/Standards/Regulations………………………………………..……………………………....11	 	

II.4 Concept Development and Selection……………………………………………………………….….…………....11	 	

II.4.1 Website and Web Server Selection…………………………………………………………………..…….….12	 	

II.5 Preliminary (Fall) and Detailed Design (Spring)...13	 	

II.5.1 High-level HBaaS pipeline………………………….…………………………………….………………………...14	 	

II.5.2 Data Sources…………………………………………………..……………………………………………..……….......15	 	

II.5.3 Accumulo Table Design……………………………………………………….……………….……..…………..….15	 	

II.5.4 Computing alignments with HMMER…………………………………..………………………………….....20	 	

II.5.5 Aligning and Scoring scanned sequences………………………..…....…………………………...…...20	 	

II.5.6 Alternative Designs……………………………………………………………………………………………………….22	 	

II.6 Design Evaluation Methods…………………………………………………………………………….…......………...23	 	

II.7 Design Evaluation Report: Performance, Reducibility and Cost…………………..……………....25	 	

	

4	
	

II.8 Design Revisions and Optimizations (Fall/Spring)..28	

II.9 Final Design Specification with BOM..30	 	 	

Section – III: Entrepreneurship & Business Development (primarily TG course
requirements)...30	 	

III.1 Business Objectives and Risks (Fall)...30	 	

III.2 Competitive Intelligence: Market Analysis (Fall)...31	 	

III.3 Lean Canvas Business Model (Fall)...31	 	

III.4 Financial Analysis (Spring)...32	 	

III.5 Intellectual Property (Spring)...33	 	

Section – IV: Results……………………………………………………………………………………..…………………..…….....33	 	

IV.1 Conclusions……………………………………………………………………………..…………………………………...…...33	 	

IV.2 Recommendations………………………………………………………………………………….…………………...…...33	 	

Appendices……..……35	 	

A Team organization chart………………………………………………………………………………….………………..…..35	 	

B Project Gantt Chart…………………………………………………………………………………………….……………..…..36	 	

C. Design Documents: Drawings, Layouts, Analysis reports……………………………………………..….37	 	

D. Team Logistics Systems………………………………………………….…………………….……………………….…….37	 	

E. References List………………………………………………………………..……………………………………………….....37	 	

Conference and Journals of Interest for publishing results	 	

F. Example Data…………………………………………………………………………….…………………………………...…….39	

 G. Accumulo Database Table Formats…………….………………………….…………………………………...…….41	 	

	 	

 	

	

5	
	

Section – I: Project Definition and Plan
	

I.1 Mission Statement
	
We aim to create an online Bioinformatics-as-a-Service (BaaS) platform, a web

service providing sequence and motif alignment and search for proteins, accelerated by
GPUs and the Accumulo Database. Our platform will run on a cluster of machines
equipped with GPUs. Each machine will host data as part of the Accumulo distributed
database and leverage their attached GPUs to accelerate parallel computation and data
retrieval. 	

	
I.2 Background
	

Bioinformatics-as-a-Service (BaaS)	

Bioinformatics is the use of mathematics and computer science to organize,
analyze, and store the data generated in life science research and by the health
industry. Bioinformatics often involves the development of software tools to understand
biological processes through applications such as data mining, sequence analysis, gene
and protein expression, protein structure modeling, and network and systems biology.
Examples of bioinformatics applications include RNA and DNA sequencing, genome
alignments and assemblies, mutation identification, microarrays, and database creation
and management.	

The very large amount of data that is collected in biological studies such as
genomics or protein analysis must be processed using computers. Computer scientists
combine algorithms, statistics, and mathematics, and engineering in order to make
sense of the information. 	

HMMER is used for searching sequence databases for homologs of protein
sequences, and for making protein sequence alignments. It implements methods using
probabilistic models called profile hidden Markov models (HMMs).	

	
Compared to BLAST, FASTA, and other sequence alignment and database

search tools based on older scoring methodology, HMMER aims to be significantly
more accurate and more able to detect remote homologs because of the strength of its
underlying mathematical models [4, 5]. In the past, this strength came at significant

	

6	
	

computational expense, but in the new HMMER3 project, HMMER is now essentially as
fast as BLAST.	

	
We call the HMMER algorithm on data queried from Accumulo [6] using local

graphical processing units (GPUs).	
	
GPU	

A graphics processing unit (GPU) is designed to rapidly manipulate and alter
memory to in order to accomplish a particular task. GPUs are commonly used in
devices that require image processing such as computers, smartphones, and work
stations. GPUs have a highly parallel structure which makes them very effective for
processing data that can be done in parallel. Researchers such as Burrage et al sped
up biological computation with GPUs [7].	

We use GPUs for accelerated computation on data queried from Accumulo.
They are ideal because the HMMER algorithm is SIMD-- single instruction multiple data-
- meaning that the same instructions can execute in parallel across all the data on a
GPU.	

Apache Accumulo	

The Apache Accumulo sorted, distributed key/value store is a robust, scalable,
high performance data storage and retrieval system. Apache Accumulo is based on
Google's BigTable design and is built on top of Apache Hadoop, Zookeeper, and Thrift.
Apache Accumulo features a few novel improvements on the BigTable design in the
form of cell-based access control and a server-side programming mechanism that can
modify key/value pairs at various points in the data management process.	

In short, Accumulo is our database, delivering fault tolerance, distribution and
availability for huge amounts of protein sequence and model data. Cell-based security
may gain relevance if we need to restrict access to certain gene data.	

	

I.3 Stakeholder List
	

Our target users range among physicians working in personalized medicine,
forensic scientists working in crime scene identification, epidemiologists working in

	

7	
	

disease identification, genealogy consultants working in kinship analysis, biologists
working in research generally, and other groups who use protein model-to-sequence
scoring in their daily work. These users need scoring information fast, so that they may
prescribe correct medication and catch criminals early, provide expedited genealogy
services and more rapidly discover scientific advances.	

	
Additional stakeholders are other bioinformatics-as-a-service providers. Janelia,

a research group at the Howard Hughes Medical Institute (http://www.hhmi.org/), is the
closest provider, hosting the online framework http://hmmer.janelia.org/. The Janelia
group would be interested in our project, particularly our design, if we achieve
sufficiently greater performance. The NCBI would also be interested if our performance
increase is much greater. The NCBI hosts a similar protein sequence tool called
BLASTp
(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PAGE=Proteins&PROGRAM=blastp),
which has the same function as HMMER but uses a different algorithm.	
	

I.4 Project Scope and Resources
	

We will provide the end user with a website that can be used to help deal with
protein sequences. We will update the website based on customers needs and add new
features such as additional hmmer classes and hmm profile uploading. We will add
more gpu nodes if it is necessary to expand. 	
	
 We aim to provide two service classes: hmmsearch and hmmbuild. 	

● In hmmsearch, a user provides HMMs (Hidden Markov Models) representing
protein sequence motifs, and requests the top-scoring sequences for each model
from existing, curated databases of protein sequences stored on our Accumulo
platform. Users may alternatively store motifs in a server-side database.	

	
 All our software resources are open source. In terms of hardware resources, we
have three levels:	

● A server located in Stevens Burchard room 412, equipped with three GPUs. This
is known as b412srv.	

● A research cluster of 8 machines, all equipped with GPUs, located in the Stevens
library basement.	

● Access to very large clusters at MIT CSAIL	
	

	

8	
	

I.4.1 Budget
	

We have no budget as we have no material expenses. Hardware is supplied by
Stevens and MIT CSAIL and software is open source. We bought a projector screen to
display our final website on Senior Design Expo. All our costs are in human
development time.	

	

I.5 Project Plan
	

Here is our plan, broken into major goals with subgoals:	

1. Web server frontend
a. Create a basic set of web pages with project information
b. Create a test webpage for use in development. The test webpage will

display the results of internal queries to make sure they work.
c. Create a production-level query webpage containing a form to enter in

sequences, motifs and target databases.
d. Create a file upload mechanism as an alternative to entering text.
e. Create javascript to validate entered information.

	
2. Web server backend

a. Set up our backend on our compute server b412srv or open required ports
on b412srv to access it remotely. Determine which is the better strategy.

b. Test that the backend receives information correctly from the front end.
c. Determine a way to return results to the frontend asynchronously, since

some query jobs will take a long time (on the order of hours).
d. Setup the server for multithreading, to handle multiple jobs concurrently.
e. Write code to connect to Accumulo and scan the tables
f. Integrate in the custom iterators described below.

	
3. Accumulo setup

a. Do prerequisites; create user accounts, install Hadoop and Zookeeper
b. Install Accumulo on our server b412srv on our 1TB networked filesystem.
c. Design an Accumulo schema to store protein data.
d. Create a client to parse raw sequence data and ingest the sequences into

	

9	
	

Accumulo
e. Create a client to parse taxonomy information and ingest the data into

Accumulo
	

4. Accumulo Iterators
a. Create test iterators to ensure everything is working
b. Learn how to run the HMMER C code in development at Stevens
c. Create an iterator that uses JNI to call the HMMER C code, single-core

CPU version
d. Create an iterator that uses JNI to call the HMMER C code, multi-core

CPU version
e. Create an iterator that uses JNI to call the HMMER C code, single GPU

version
f. Create an iterator that uses JNI to call the HMMER C code, multi GPU

version
	

5. Integration
a. Unit test each of the above components
b. Complete the pipeline-- data flow from a request at the front end to the

back end to Accumulo scanning to Accumulo iterators to the back end to
the front end

c. Benchmark everything. Compare to Janelia’s HMMER service
specifically: http://hmmer.janelia.org/

d. Work on the slowest components from benchmarking. If performance is
ok, add features and datasets.

e. Write up results.
	

Section – II: Design, Evaluation & Optimization
	

II.1 Requirements
	

 Stakeholders:	

HBaaS is a web service to answer protein sequencing queries. For example,
given a user-provided HMM motif, what are the top 10 protein sequences in the NCBI
Genbank database [3] that match that motif? What are their alignments? What if we

	

10	
	

restrict the database to only proteins from the species homo sapiens?	

● Easy to use query forms and clear site design	
● results are returned very quickly and accurately 	
● web service has high availability.	
● Easy to understand and process results	
● HBaaS must be able to return results to the user asynchronously, since some

queries can take several hours to complete.	
● HBaaS must be able to accept new data (protein sequences or HMM motifs) to

ingest into the web server’s backend database.	
	
 Design:	
● We will use the front end for users to fill out information and submit their query 	
● We will use Accumulo to handle queries and protein sequence retrieval	
● Java will call Accumulo to get protein sequences and pass them to the algorithm	
● The HMMER3 algorithm will run on a GPU cluster to increase speed	
● The algorithm will return the protein sequences that passed the filter to the server	

	

 Technical:	

● The web service will be able to handle multiple requests at a time	
● The web service will not process more requests than we can handle with our

cluster resources. We will know this constraint better once we start
benchmarking.	

● We will not store more data than we have hard disk space, about 1TB on Dr.
Ganesan’s server.	

● We assume data and queries are in correct format. We don’t want to error check
every sequence, model and query as this costs development time and possibly
performance.	

● We assume the result size of a query is relatively small, on the order of a handful
of sequences or motifs that are the best matches for a given query. We are not
in the business of transferring entire databases over the Internet. 	

	

II.2 Constraints and Assumptions
	

 Constraints:	

	

11	
	

● the server must be connected to the internet	
● the service will be accessible on different browsers	
● we will use a cluster that contains four GPUs	
● we will initially only use protein sequences from GenBank	
● our project must be finished before the Senior Design Expo	

	
 Assumptions:	

● users input a valid search query	
● users understand what the results mean	
● the server is available to process requests	
● the GPUs are ready to be used	

	

II.3 Applicable Codes/Standards/Regulations
	

OpenCL (https://www.khronos.org/opencl/) is an API industry standard for GPU
computation. CUDA is another API specific to NVIDIA. We aspire to conform to
OpenCL to guard against vendor lock-in but will use CUDA at first since it has greater
support (more libraries, more examples, more of our team has background knowledge
in CUDA).	

FASTA (http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml) is an industry
standard file format used for protein sequences and HMM motifs. We should be
capable of handling input data written in the FASTA file format.	

	

II.4 Concept Development and Selection
	

Our original project idea was to create a distributed graph library, offering graph
algorithms on the Accumulo database that leverage local GPUs. GPUs accelerate
computation and Accumulo enables scalability to big datasets. After investigating the
graph library idea, we decided that it was too abstract: the team had trouble connecting
with the project idea and motivation. 	

This sparked our shift to specialize on an application in bioinformatics. Dr.
Ganesan and other students had some experience with biological computation, and

	

12	
	

everyone found the application more inspiring. Our central concept remains the same--
which we will use GPUs to accelerate computation and Accumulo to store and
operate on massive data sets. 	

Dr. Ganesan and Hanyu, as part of the Heterogeneous Computing and
Mathematical Modeling group, have been developing HMMER for some time. HMMER
is a C program that solves hmmsearch by doing sequence match scoring computations.
Their NVIDIA GPU version of HMMER succeeds on parallelizing the search using
multiple GPUs. We chose our architecture such that we could build on the existing
HMMER work and use it. No need to develop solutions to protein sequence-motif
scoring from scratch.	

We decided to use a database in our architecture because user needs call for
selective queries. It is helpful to users to do scoring over only the proteins within a
selected group. For example, a user may wish to find the best motif for all the plant
protein sequences or all the homo sapiens protein sequences. Databases give the
ability to scan over targeted parts of the data, as opposed to non-database solutions
that generally map over an entire dataset (e.g. MapReduce). How we are able to select
certain subsets of data in a dataset depends on the database table format we use for
storing data. Our table format is detailed below.	

We chose Accumulo as our database because some team members had
background knowledge of it and it offers iterators, a framework to to computation on
data as it is scanned from a database. The beauty of iterators is that they execute in
parallel across all tablet servers that retrieved data is stored at. We saw a natural
opportunity to call HMMER code (which uses GPUs) from iterators.	

With GPUs and Accumulo at the center of our design, the remaining component
to link everything together is our web server.	

	
II.4.1 Web Server Selection	
	

Our web platform process starts with the web front-end, so it is necessary to
have a good front-end design and development. For the front-end, we will first have
three most important features which are Data Upload, Result Download, and Query
Form. Data Upload function will be used by us, the designer; user would frequently use
the result download and query form functions. Basically, users would input in the query
form to start the process, and they will get the results through the web server

	

13	
	

technology, which is Java and Apache in our case. There are some candidates for the
web server, which are Apache, IIS, C/C++, Ruby, Node.js, and Java. 	

	
Apache is at the core of the LAMP technology stack upon which a lot of server

architecture is based: Linux, Apache, MySQL, and PHP/Python/Perl. It is a traditional
web server that is very easy to configure but may require plug-ins or backend scripts,
like ASP and PHP, when complex functions are needed. 	

On the list of IIS advantages, its Active Server Pages (ASP) percolates to the
top. ASP enables developers to embed code into HTML pages. These ASP pages are
parsed by the server before being supplied to the client as HTML. ASP enables
developers to work in a number of different .NET languages, including C/C++, and C#.
IIS is a good alternative for Apache but is far more expensive once we add in the cost of
Microsoft Windows Server 2008 R2 and other back engine software. 	

C/C++ is powerful but it is so underlying that requires a huge amount of details
and specifications. C/C++ does not have existing libraries for constructing web server
and offers manual memory management.	

Ruby and Nodejs are both powerful software offering automatic memory
management and a variety of libraries for constructing web server, which could save the
group more time on functionalizing the web server.	

Besides the advantages Ruby and node.js have, Java offers certain functions
such as readymade API that make it convenient to exchange data with server backend,
which is Accumulo Database and GPUs in our case. Also, even choosing web server
language, it would eventually go through Java platform. Therefore, considering the time
and money that Apache could save and convenient function that Java could provide, the
group has been applying Apache and Java for web server construction by now. 	

II.5 Preliminary (Fall) and Detailed Design (Spring)
	

	

14	
	

 Design Overview	

	

II.5.1 High-level HBaaS Pipeline	
	

1. A user submits a query via our web interface.	
2. Our web server backend creates a customized query-and-compute request for the

Accumulo database and launches it.	

	

15	
	

3. In parallel, each machine on the Accumulo database searches through its locally
stored protein sequences. The top scoring results are returned to the web server
backend.	

4. The web server backend forwards the results to display on the web interface.	

	
II.5.2 Data Sources	
	

Our initial protein database is NCBI’s Genbank database, available
for pubilc download at ftp://ftp.ncbi.nih.gov/ncbi-asn1/protein_fasta. 	

Proteins are most commonly identified by an accession number (also
referred to as a seqID). Some organizations like the NCBI also have their
own identifier for cases when an original sequence uploader re-uploads the
same sequence due to an error. Additionally, organizations that aggregate
proteins from multiple databases identify the original source database. 	

Originally we used the software BioJava3 (http://biojava.org/) to
parse FASTA protein sequence files, as it saves us from writing our own
parser [8]. Later on, we decided to switch parsers to an open source
version created at the MIT Lincoln Laboratory because it formatted the
taxonomic information in a cleaner fashion for database scanning.
Specifically, the new parser created entire taxonomy strings in the form
“taxonomy|kingdom_name; phylum_name; ...; species_name.” The new
parser is available here:
https://github.com/doricke/BioTools/tree/master/GenBankParser. While
using the GenBankParser, we discovered a bug in parsing the organism
field of GenBank files, which we patched and submitted to the original
author, documented here: https://github.com/doricke/BioTools/pull/1. 	

 Taxonomic information about the protein sequences is also taken
from NCBI at ftp://ftp.ncbi.nih.gov/pub/taxonomy/. This includes data linking sequences
to the species identifier that that sequence is from, data on the standard biological
hierarchy of identifiers from kingdom down to species and other related information. An
example taxonomic lineage for humans is shown to the right.	
	

II.5.3 Accumulo Table Design	
	
 The format we store protein sequence data in an Accumulo table determines how

	

16	
	

easy it is to answer some queries over others. This is called table design for query
planning. For example, if we knew that a very common query is “What are all the
sequences associated with a certain family,” we could create an index structure to make
the data access time for that query optimal. The tradeoff is either redundant data
storage or slower access to other queries. Benchmarking will help indicate whether
database access patterns are a performance bottleneck.	
We chose our table design based on the following:	

● There is far less data, in terms of bytes, in the sequence identifier and taxonomic
information than the actual protein sequence. Therefore we should avoid
repeating sequence data, whereas it is okay to repeat identifier and taxonomic
data. 	

● We expect users to request alignment computations on all the sequences for a
given taxonomic level. For example, what are the best scoring sequences within
all Mammalia class sequences in the database? It should be relatively
straightforward to answer this query.	

● It should be easy to answer the reverse question: what is the taxonomic
hierarchy for a given sequence? This is a common question after finding the
best matching sequences, to discover what groups those sequences are from.
Are they all viral sequences, for example?	

● We should provide a way for users to search for a taxonomic ID by name, since
we do not expect users to memorize that 9606 is the taxID for homo sapiens, for
example.	

● Accession number is the most common identifier for a protein sequence, though
searching by genbank ID and by source database are good features to have.	
	

 To facilitate answers to the above expected questions, we base our schema on a
design pattern called the D4M Schema [11]. Specifically, we use the pattern of storing
a table alongside its transpose for the table containing sequence identifiers and
taxonomic information. This double data storage, which is acceptable because the
amount of data there is far smaller than the sequence data itself. In return, we gain full
indexing across all rows and columns. We show how to answer the two questions
below.	

 As alluded in the previous section, we changed our design at the same time as
we changed our taxonomic information format. Below we present our original table
design. Our final table design is shown in Appendix H.	

	

17	
	

Table Format Spec:	

	

	

	

	

18	
	

 	

	

	

 The following notes aid interpreting the tables:	

● The suffix ‘T’ in TseqT and TtaxT stands for transpose.	
○ In ‘species|1 ‘, 1 is a taxonomic ID at the species hierarchy level. Same

pattern for genus, family and the rest of the hierarchy.	
● In ‘name|a’, ‘name’ is a fixed constant and ‘a’ is the unique name given for the

row’s taxID.	
● ‘accid|BAC05839.1’ is an accession number.	

	

19	
	

● ‘gi|21928500’ is an NCBI identifier. 	
● ‘gb’ refers to the NCBI Genbank database. ‘dbj’ refers to the DNA Data Bank of

Japan (http://www.ddbj.nig.ac.jp/).	
● A ‘1’ value indicates the presence of a column for a row. This is used when the

column name contains the information traditionally stored in the value. Storing
the data in the column instead of the value allows the database to index that
value for significant search speedup.	

● The column ‘seq’ contains raw sequence data, without any further processing.	
● The column ‘desc’ contains the header description for a sequence. These

headers are an ad hoc description of a sequence and do not have a standard
format. Therefore, we do not index them for searching.	
	

 Example queries: 	

● Find all the sequences in the database under taxID genus|4.	
○ First scan Ttax on the row ‘genus|4’ for columns starting with ‘species|’

and ‘gi|’. The result is ‘species|1’ and ‘species|2’.	
○ Scan Ttax on the rows ‘species|1’ and ‘species|2’ for columns starting with

‘species|’ and ‘gi|’. The result is ‘accid|BAC05839.1’, ‘accid|AAB63305.1’,
‘accid|AAB54048.1’ and ‘accid|AAB67604.1’.	

○ Scan Tseq on the rows ‘accid|BAC05839.1’, ‘accid|AAB63305.1’,
‘accid|AAB54048.1’ and ‘accid|AAB67604.1’ for column ‘seq’. The result
are the sequences associated with ‘genus|4’.	

● Build the taxonomic hierarchy of sequence ‘accid|AAB71326.1’.	
○ First scan TtaxT on row ‘accid|AAB71326.1’ for all columns. The result is

‘species|3’.	
○ Scan TtaxT on row ‘species|3’ for all columns. The result is ‘genus|5’.	
○ Scan TtaxT on row ‘genus|5’ for all columns. The result is ‘family|6’.	
○ The hierarchy is ‘accid|AAB71326.1’ < ‘species|3’ < ‘genus|5’ < ‘family|6’.	

● Find the taxonomic IDs associated with names beginning with ‘homo’. (prefix
search)	

○ Scan TtaxT on rows beginning with ‘name|homo’. Result are the
taxonomic IDs. We also have the full names from the row names.	

● Find all sequences from the DNA Data Bank of Japan.	
○ Scan TseqT on rows beginning with ‘dbj|’ for all columns. Result are the

accession numbers for all relevant sequences.	
○ Scan TseqRaw on the row accession numbers from (a) for column ‘seq’ to

	

20	
	

obtain the actual sequences.	
	

 Possible points of expansion that we will consider if we have time and use case
demand:	

● We may add extra degree columns or degree tables to index the total count of
sequences under a given taxonomic ID. Currently this is possible by scanning
through the data and counting by recursive algorithm. For example, we would to
count the number of sequences for a genus, we would find all species childs of
that genus (table scan pass 1) and then count the child sequences of those
species (table scan pass 2). Indexing the data reduces the access time to a
constant.	

● We may index the sequence header description by word, in order to find the
sequences with a header that contains the words “helix receptor” for instance.	

● Our design is flexible in that it allows the addition of properties associated with a
taxID or a seqID, in case we find indexing such properties useful in the future.
For example, we may store ‘sampleDate’ or ‘seqQuality’ as additional columns in
Tseq.	
	

II.5.4 Computing Alignments with HMMER	
	

HMMER is a program written in C to compute sequence alignments and scores.
In order to call HMMER from Java code, we use a technology called JNI, Java Native
Interface. JNI allows a Java method to call a C method, passing parameters and return
values in memory. 	

HMMER comes in several versions. The first original version runs in parallel on
a CPU. We use the CPU version for our first prototype because it is the simplest. A
version of HMMER in development at Stevens’ Heterogeneous Computing and
Mathematical Modeling group runs on GPUs. This is our final target, to leverage GPUs
for computational acceleration as part of an Accumulo platform that handles mass data.	

	

II.5.5 Aligning and Scoring Scanned Sequences	
	

While the Accumulo schema works well to select only sequences of interest, our

	

21	
	

goal is to compute sequence alignments, not to find sequences. Our use case is to find
the best scoring sequence alignments for a given set of queried sequences.	

One way to proceed is to gather all the queried sequences onto a single machine
at the server and perform the computation on that machine. We will implement this
approach for comparison purposes but it is not our final goal, because it ignores
potential distributed computation of sequence alignments and unnecessarily transmits
all the sequences over a local network. The only necessary transmissions ought to be
the highest scoring sequences.	

Our target design will compute sequence alignments locally, at the machine the
data is stored at. We will do this by using Accumulo’s iterator framework. Here is a
diagram illustrating how scan-time iterators work in Accumulo:	

	

 The arrows here represent streams of data. The blue objects are in-memory
processes and the orange objects are final data destinations.	

Data originally resides in disk or in memory (if cached). All data matching the
criteria of a scan is streamed and merged together in sorted order through an internal
merging iterator. From there, data passes through a hierarchy of iterators, some
system-defined and some user-defined. Iterator 20 is the typically a versioning iterator
that filters away old data. We define a custom iterator after that at, say, priority 15
(higher priority iterators execute first).	

 Our custom iterator operates on data in three phases:	

1. Prefiltering. A quick computation that filters out sequences with very low
alignment scores.

2. Scoring. An intensive computation that returns a score (and an alignment) given
a sequence.

3. Maxing. Only lets pass the top X scoring alignments, where X is query-defined
(say 10).
	
For increased efficiency, we define our iterator to operate in batches. It will

	

22	
	

handle 100,000 scanned sequences at a time. This allows the HMMER platform to take
advantage of parallelism by running on multiple sequences at once (SIMD style-- Single
Instruction Multiple Data).	

Keep in mind we have an outer level of parallelism since iterators simultaneously
run on all tablet servers that store queries data. In order to maximize this parallelism, it
is important that the protein sequence data is evenly distributed across all available
tablet servers. We will gauge our performance by measuring load balance when we
perform benchmarking. If necessary, we have three options to introduce load balance:	

● Table splits. We designate places within the database to explicitly divide data
onto different tablet servers. Accumulo usually does a good job determining
tablet splits on its own (except during ingest phase), but we may manually set
these if we identify a common query pattern does not load balance.	

● Reversing sequence IDs. Because Accumulo stores rows in lexicographic order,
reversing the sequence IDs will better shuffle rows around tablet servers. For
example, the rows ‘abx’ and ‘acb’ are adjacent. When reversed, the rows ‘xba’
and ‘bca’ are on opposite ends of the alphabet and almost surely on different
tablet servers.	

● Using a hash function. If necessary, hashing seqIDs uniformly throughout the
alphabet will guarantee load balancing, at the price of an additional computation.	

	

II.5.6 Alternative Designs	
	

One alternative to the Accumulo database is no database: just store our protein
data inside a big data file system like Hadoop. We can then use a framework like
MapReduce to run computations across all the data in Hadoop. MapReduce is a better
design if our computations really do run on the entire database [10] . This is not our use
case; we hope users will take advantage of selective access to data by taxonomic
classification to only run computation on a subset of data. We may be able to offer the
best of both worlds by running MapReduce jobs from Accumulo, for the cases where we
need to score alignments on a whole database.	

Another alternative is using a SQL database such as BioSQL [9]. SQL databases
differ from NoSQL databases like Accumulo in that SQL databases provide more built-in
services in exchange for lower performance. For example, the ability to JOIN tables of
a database is built into SQL database engines whereas NoSQL database designers

	

23	
	

typically need to write routines to perform a JOIN by hand. Another way to think of the
difference is that NoSQL databases provide finer control over storage format and
access patterns yielding better performance, at the expense of additional development
time. We choose a NoSQL database since performance is our primary concern.	

We decided not to convert the C++ CUDA algorithm to Java’s version of CUDA,
JCUDA. This would have let us connect the HMMER3 algorithm to our backend much
easier. However, a drawback to this would be that the existing C++ code would have to
be rewritten. We determined it would be more time-effective to use JNI in order for the
algorithm to communicate with our backend.	

	

II.6 Design Evaluation Methods
	

 Subsystem Tests: 	

● We tested the front end and back end by entering string input and pressing radio
buttons on the website. The server was able to echo back the results.	

● The HMMER3 CUDA algorithm is compared against the results from
http://hmmer.janelia.org/ and it is accurate.	

● The JNI’s job is to take in an array of strings from Java and pass them to the
CUDA code. Afterwards, the CUDA code returns an array of booleans to the JNI
and the JNI passes the array of booleans to Java. We did this with several
sample sequences and were able to successfully pass data between Java, JNI,
and CUDA.	

● Because Accumulo is native to Java we are able to query the accumulo tables
and easily get an array of raw protein sequences.	

● Total pipeline - All components of the system appear to work together. Now, we
need to verify our results with http://hmmer.janelia.org/ and benchmark our
pipeline.	
	

 Performance Evaluation: 	

Benchmarking is the name of the game. Since our project is an online
bioinformatics as a service platform, which works like a web search engine, runtime of
the program is the most important criteria that can help us determine if our design is
good or not. We will measure performance in terms of runtime and plot scalability of run

	

24	
	

times against query size, motif HMM size, and number of computing resources
available.	

● Runtime vs Query Size and Motif HMM Size by Weak Scaling	

If users send a large number of protein sequences to our web server to make a
request, the back end will spend a lot more time on computing. We
therefore need to find out how runtime increases with the size of
problem we process. 	

Weak scaling is defined as how the run time varies with the
number of processors for a fixed problem size per processor. We
test weak scaling by holding problem size (query size and motif
HMM size) assigned to each processing element (GPU on a
database tablet server) constant and adding additional elements to
solve a larger total problem. This type of measurement is a good
indicator for performance because it tests how well we can meet
additional demand by adding more hardware resources. 	

● Runtime vs Computing Resources by Strong Scaling	

We use parallel processing in our design. Parallel
processing is the simultaneous use of more than one GPU core
to execute a program, which splits up a programming task into
sections. Ideally, parallel processing makes programs run faster
because there are more GPUs running it, and thus runtime will
decrease linearly as we add more nodes. However, in practice,
it’s often difficult to divide a program in such a way that separate
GPUs can execute different portions without interfering with each
other. As more processing nodes are added, each node will spend more time doing
communication than useful processing. At some point, parallel slowdown occurs and
adding more nodes will not help significantly. In other words, the improvement will no
longer be linear. 	

In this benchmark we hold problem size (query size and motif HMM size) fixed
and increase number of processing elements (GPUs and tablet servers). The goal is to
find a "sweet spot" that allows the computation to complete in a reasonable amount of
time, yet does not waste too many cycles due to parallel overhead. We aim to achieve

	

25	
	

as close to strong scaling as possible, when our performance (in terms of work units
completed per unit time) scales linearly with number of resources used. 	

	

● Artificial and Real World Benchmarks	

 We will use artificial workloads to stress test and benchmark performance to see
if the system meets our expectations. We will apply a standard benchmark currently
applied by other Baas platforms, such as BioBench [14]. BioBench is a benchmark suite
for a variety of bioinformatics applications, including BLASTn, BLASTp and most
relevantly, HMMER. BioBench uses HMMER v2.3 to search the SwissPROT protein
database against the consensus of a small selection of protein sequences. Because our
platform is based on HMMER, we will use a similar set of tests to BioBench as a
standard to benchmark our platform before use. 	

After successfully running results on BioBench, we will move to real world
benchmarks. At this stage, we will open our web site and put our product into use. By
inviting volunteers to use our service and monitoring performance of our program, we
will locate bottlenecks and make targeted improvements.	

II.7 Design Evaluation Report: Performance, Reducibility and Cost
	

We will compare against HMMER’s web service at
<http://hmmer.janelia.org/search/hmmsearch> as a baseline. We expect performance
improvements as a result of using Accumulo and GPUs. Now that we have a fully
functioning pipeline we will be able to get more specific performance boosts. 	

Benchmarking Accumulo Scan Times	

To generate graphs we queried Accumulo with a taxonomic identifies for
example: taxonomy|Bacteria; Cyanobacteria. Accumulo will find all sequences that have
the taxonomic identifier that begins with the string. We used many of these strings and
recorded the time it took to retrieve and process the data. We scanned the database
twice to retrieve accession IDs first and then get raw sequences.	

	

26	
	

	

This graph shows us the number of sequences vs time it takes to scan. We can
see two distinct lines which may be an artifact of how the data was ingested into
accumulo. It takes roughly 10 minutes to scan 14 million sequences based on the line
with a smaller slope. This is a very naive graph because we are using a small batch size
of 10,000 and only have 1 thread. This is not using the full power of the GPUs.
However, it shows that Accumulo is handling the data well because we are seeing data
in a linear pattern instead of an exponential curve.	

	

	

This graph shows the number of sequences vs time it takes to scan. We can see

	

27	
	

two distinct lines are converging. We used 4 threads with a batch size of 10,000 which
resulted in a speedup of roughly two times to scan the database. We see that it only
takes about 7.5 minutes to scan 14 million sequences. We plan on improving
performance by installing Accumulo onto other nodes in order to further decrease scan
times.	

Benchmarking the HmmerIterator Scan Time	

 We were successfully able to create an advanced iterator that combines
scanning of Accumulo to get raw sequences and the Hmmer code that calculates if
each sequence passes the msv filter. For these graphs we wanted to test the best
batchsize to feed into the iterator. We were restrained by 1GB of ram on the server. So
if the batch sizes were too big, the program would crash or we would be slowed down.
In addition, we used multiple threads to further parallelize our system. To generate
these graphs we used a taxonomic string that gave us 250,000 sequences to feed into
the iterator.	

	

This is our worst performance graph. It uses only a single thread for the iterator.
The time it takes for the iterator appears to be independent of the batchsize of a single
thread.	

	

28	
	

	

This graph was the best performance graph because it took much less time to
process the data. With a thread size of 3 and a batch size of 100,000, we were able to
process the data in about 12 seconds. The graph shows an exponential decrease that
levels off when we increase the batch size.	

	

We also tried to prescan the tables to collect twice the amount of sequences that
the batch iterator required. We reasoned this would speed the iterator time. However,
we are memory restricted so holding more data will be a problem. We abandoned this
approach because the speed up times are not much better.	

	

29	
	

	

We are creating a software service so there is no cost for materials. Therefore,
we cannot do anything to reduce its physical size. 	

	

II.8 Design Revisions and Optimizations
	

 The protein sequence alignment in the janelia website uses a typical database
and regular CPUs. We recognized that HMMER3 algorithm can be designed to take
advantage of both the parallel capabilities of Accumulo, the GPU architecture, and the
GPU clusters. 	

Our initial Accumulo schema did not include nearly as much protein metadata.
We had no taxonomic information or information on the source database of a sequence,
for example. We added this additional information because (1) a database only adds
value when used for indexing and (2) restricting queries to only sequences from a
certain database or a certain taxonomic subgroup is useful to end users. 	

 Our initial plan also included storing motifs in the Accumulo database. We
decided to deprioritize motif storage and require the user to upload their own motifs
(which are of far smaller size than sequences). We will revisit motif storage time
permitting.	

We create a platform to perform our plans and algorithm. There is already janelia
website, so we do not want to build the same service. Instead, we would build
something similar with higher performance which is on our HBaaS website. Considering
the basic performance, we have sequence paste and file uploading function for user
queries. In addition, we provide an Accession ID lookup feature for users to find
information based on specific Accession ID. We expect these functionalities to have
multiple inputs so that user can actually compare the results based on their inputs.
Furthermore, we have a new feature which is for HMM profile only. Since HMM profile
has a very unique format, we created a specific gateway for it to distinguish from normal
input files. Also, users can input directly through the taxonomy restriction. All results
under the taxonomy would be the output. Finally, in case of that users want to make the
query in very detail, they can use all query features at the same time. 	

 We had several variables hard coded into the CUDA files that we needed to

	

30	
	

change. The HMM size was difficult to change because the size was used to statically
allocated memory in a class file. At first we considered recompiling code each time
there was a request. We found a simpler solution and implemented dynamic memory
allocation based on input HMM size in order to allow for maximum parallelized
processes to occur in each GPU node.	

 Because of the platform we chose for the backend is Spring, we build it in eclipse
with Maven. To call any function in CUDA, we have to use JNI to communicate between
Java and C++ since web server is build in Java and CUDA is build in C++. We had a big
problem when we combine the Java server code and JNI code, because server part had
a package but JNI does not. After we give JNI a package, it does not work any more,
because of missing the function and files. To fix this, we modified the C++ code for JNI
which added package name to function name such as Java_maven_wrap_seqpass.
After changing the C++ code, we recompiled it to get updated native library file. Next
step would be making a new head file by using Javah command or we could edit the
head file manually to change the function name. And then, we can put all of those new
files we made together with the server project, it works.	

 We created a custom iterator in accumulo in order to decrease the total time it
takes to get results. Each thread can use the custom iterator to scan and uses the
native library to get results. In other words, we are able to hide the compute time in the
scan time. We determined that using three threads and batch sizes of 90,000 gives us
optimal performance on a single node. We are unable to have greater threads or batch
sizes because we are restricted by device memory.	

 Our future plans are to increase compute and scanning speed. We currently only
have Accumulo running on a single tablet server. We plan to install Accumulo on four
additional tablet servers. This way, we will be able to add another layer of parallelism
and increase speeds even more. We would also like to convert the raw sequence data
that is represented by characters to byte sequences. First, it will shrink the space
allocated to each sequence and therefore will effectively increase the throughput of data
from Accumulo to the native library. Second, because we are preprocessing the raw
sequences, we will no longer need to process them on the GPU side. Lastly, we want to
store and pass the data structure that represents our HMM file between Java and the
Native Library. Currently, for each batch we are calculating the HMM file, but it is only
necessary to do this once. Fixing this problem may result in a significant speed up to
processing time.	

	

	

31	
	

II.9 Final Design Specification with BOM
	

 Because this project is completely unphysical and the web server and GPU
clusters have been provided by Dr. Ganesan, we do not have a bill of materials.	

	

Section – III: Entrepreneurship & Business
	

III.1 Business Objectives and Risks
	

Business Objectives:	
● Build the fastest bioinformatics-as-a-service platform	
● Promote heterogeneous solutions for speeding up real world

processes	
Risks:	

● Development time higher than expected	
● Electricity bills for running servers too high	
● We don’t achieve the performance we expect. In this scenario, our

contribution is a detailed analysis of why we don’t achieve good
performance. We have reduced our risk by researching database and
GPU architectures. Our expectations have a solid theoretical basis.	
	

III.2 Competitive Intelligence: Market Analysis
	

Other companies offering data analytics on Accumulo are Sqrrl and Argyle data
[1, 2]. Their products are Sqrrl Enterprise and ArgyleDB, respectively. Companies like
these two create general analytics platforms and offer some solutions to specific
problems. Argyle’s prime customers are financial companies in the context of fraud
detection. Sqrrl’s prime customers are in the healthcare industry, and other industries
that need a strong privacy / access control layer on their data. 	

	
We target a very different customer base, providing a platform for specific

problems in bioinformatics. We also distinguish ourselves from them by using GPUs,
which few have used alongside databases. This is particularly relevant for problems

	

32	
	

with computational bottlenecks, not just data bottlenecks (big compute in addition to big
data).	

	
Two competing tools for protein sequence computations are HMMER and

BLAST, affiliated with the Janelia group at the Howard Hughes Medical Institute and the
NCBI, respectively. We aim to implement HMMER on GPUs within a database, so we
expect our performance to scale higher than vanilla HMMER. We also expect our web
server performance to improve over Janelia’s compute farm by using the modern
Accumulo database to index data. We’re not sure where we will stand with respect to
BLAST as their BLAST uses a different scoring algorithm.	
	

III.3 Lean Canvas Business Model
	
Problem:	

● Big data: the volume of protein sequence data is huge	
● Big compute: computing alignments is computationally expensive	
● Need fast and accurate protein sequence from searching	

	
Solution: 	

● Leverage the Accumulo database to tackle big data	
● Use GPUs to tackle big compute	
● Visit our website to get a wonderful protein searching experience	

	
Customer Segments: 	

● Biologists -- for research	
● Forensic scientists -- crime scene identification -- catch criminals early	
● Epidemiologists -- disease identification -- stop epidemics early	
● Physicians -- prescribe correct, personalized medication	
● Genealogy consultants -- expedited kinship analysts services	
● Anyone using protein model-to-sequence scoring in their daily work	

	
Unique Value Proposition: 	
 We aim to create an online BaaS platform with improvement: a web
service providing protein sequence-to-motif alignment, leveraging the Accumulo
database to tackle big data and GPUs to tackle big compute.	
	
Channels:	

	

33	
	

 Our website and search engine, publish performance numbers in industry
journals, directly market to companies, and use word of mouth in our specialized
community.	

	
Cost Structure: 	
 Pay salaries and purchase hardware.	

	
Revenue Streams: 	
 Since we aim to open-source our program, primary revenue is by
companies paying for a support agreement for us to help them setup, use, and
maintain our program. Revenue also comes from advertisements we will have on
our website.	

	
Key metrics: 	
 We will measure performance in terms of runtime and plot the scalability
of run times against query size, motif HMM size, and number of computing
resources available.	

	
Unfair Advantage: 	
 No one in the competition has combined the Accumulo database with
GPUs as we will, and as such we expect unrivaled performance.	
	

III.4 Financial Analysis

We have no budget; see project scope and resources in Section 1.	

III.5 Intellectual Property

We do not intend to protect intellectual property. Everything we create is open
source.	

Instead, the project will derive profit by selling a service: a support / maintenance
contract for a specified time period (say 1 year). This is the same business model that
Red Hat (http://www.redhat.com/en) uses for selling support to Linux and that
Hortonworks (http://hortonworks.com/) uses for Hadoop. 	

 We hope many others “steal our idea” and build off it, deriving better products
and citing our work, following academic and software development common courtesy.	

	

34	
	

	

Section – IV: Results	

IV.1 Conclusions

 This project was a success because we were able to complete our full pipeline.
We benchmarked the pipeline and are fixing bottlenecks. We will be submitting a paper
on May 15th to IEEE High Performance Extreme Computing. In the future, we plan to
add more protein sequence databases to Accumulo and create advanced iterators. We
also would like to use Lincoln Lab’s GPU cluster to see how much it will speed up the
process. Finally, we can add more features to the front end such as multiple hmms,
more specifications and search options, and better data visualizations. Front end is
highly based on the back end server, so more front end features require more powerful
server function. 	

	

IV.2 Recommendations	

 We recommend any group actively working with Accumulo hire a full-time system
administrator. Accumulo runs atop Hadoop and Zookeeper, all of which are nontrivial to
set up. The workload compounds when one considers multiple systems networked
together. On top of initial setup, the Accumulo stack has many configurable
parameters, such as the compaction ratio that trades ingest for query performance.
Tuning those is painstaking but necessary for top performance. A system administrator
can also handle the mundane tasks of user management, especially if we need to
enforce access control / user permissions. As implemented in the project, we
configured Accumulo as open, hassle-free and unsecured as possible to speed
development.	

 When dealing with JNI we recommend using C++. Although JNI supports both C
and C++, C does not have as many features and libraries as C++. As always, choose
the language that is most familiar and makes sense. In our application, we needed to
pass an array of strings and return an array of boolean values. At first we used C and
defined what a boolean using typedef and enumeration. However, the JNI did not either
methods and we ended up with memory leaks. To solve this problem, we converted the
JNI from C to C++ because C++ has booleans defined natively.	

 When there is necessary to perform the service on the website, we recommend

	

35	
	

the group to have one who can handle both front end and the web server, since these
two parts connect to each other very closely. If they are taken care of by two, they have
to work very hard to make sure there is no problem between the connection of each
element, and it requires a huge amount of time. 	

 When benchmarking it is a good idea to try to automate as many variables as
possible. The overall process should be run code that prints an output to a file. Then
use a graphing program such as Matlab to parse and graph the results. Benchmarking
should push the limits of the available specifications that you have such as memory and
processing power. Once you get results, you should look for the largest bottleneck and
then proceed to fix it.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

36	
	

Appendices
	

A. Team Organization Chart
	

	

	

	

	 	

	

37	
	

 B. Project Gantt Chart

	

	

38	
	

 C. Design Documents: Drawings, Layouts, Analysis reports

 Our code is online here: https://github.com/Stevens-GraphGroup/ 	

 We invite interested readers to view our code on GIthub rather than kill 50 trees
to view it here.	

	

 D. Team Logistics Systems

 We use several services to communicate and store information:	

● Github - repository to share code and the website	
● Todoist - online task manager for productivity	
● Google Drive - file storage and synchronization, collaborative editing	
● PuTTy and WinSCP - SSH and SFTP (communicating with remote servers)	
● Intellij IDEA - IDE with great Java support	
● Git - version control system to track, branch and merge changes	
● Todoist and FollowUpThen - task managements and reminder systems	
● LucidChart - charting tool used to create the Team Organization Chart	

	
	
 E. References List
	

1 "Sqrrl Enterprise - Linked Data Analysis for Hadoop." Sqrrl. N.p., n.d. Web. 30
Nov. 2014. <http://sqrrl.com/product/sqrrl-enterprise/>.	

● A general data analytics platform, powered by Apache Accumulo. Genetic
sequence alignment is possible with Sqrrl Enterprise. HBaaS offers a
specialized solution for bioinformatics problems instead. Sqrrl’s main customer
base uses its cell-level securty emphasis for Accumulo.	

2 "ArgyleDB Simplifies Real-time Fraud and Security Analytics." Argyle Data
Realtime Analytics for Big Data. N.p., n.d. Web. 30 Nov. 2014.
<http://www.argyledata.com/product/>.	

● Similar to Sqrrl Enterprise, ArgyleDB is a general data analytics platform, with an
emphasis on fraud data.	

3 Bilofsky, Howard S, and Burks Christian. "The GenBank® genetic sequence data

	

39	
	

bank." Nucleic acids research 16.5 (1988): 1861-1863.	

● Genbank is our primary data source of protein sequence data. We will expand to
other sources as time permits.	

4 "Basic Local Alignment Search Tool." BLAST:. N.p., n.d. Web. 30 Nov. 2014.
<http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi>.	

● A website that gives researchers the ability to compare amino acid sequences to
ones stored in the database.	

5 Finn, Robert D, Jody Clements, and Sean R Eddy. "HMMER web server:
interactive sequence similarity searching." Nucleic acids research (2011): gkr367.	

● Introduces the web server delivering HMMER as a service. Uses hidden markov
models to align protein sequences. It aims to be more accurate than older
scoring methods such as BLAST. We base a great deal of our design on
HMMER and use it for performance comparison.	

6 "Apache Accumulo." Apache Accumulo. N.p., n.d. Web. 30 Nov. 2014.
<https://accumulo.apache.org/>.	

● A high performance database at the center of our design.	

7 Bustamam, A.; Burrage, Kevin; Hamilton, N.A., "Fast Parallel Markov Clustering
in Bioinformatics Using Massively Parallel Graphics Processing Unit Computing,"
Parallel and Distributed Methods in Verification, 2010 Ninth International Workshop on,
and High Performance Computational Systems Biology, Second International Workshop
on , vol., no., pp.116,125, Sept. 30 2010-Oct. 1 	

● As Burrage et al sped up biological computation with GPUs, we aim to do the
same on protein sequence computations.	

8 Prlić, Andreas et al. "BioJava: an open-source framework for bioinformatics in
2012." Bioinformatics 28.20 (2012): 2693-2695.	

● We use BioJava for FASTA file parsing. BioJava has components for computing
sequence alignments, 3D models and much more that we do not use.	

9 BioSQL. http://www.biosql.org/ 	
● BioSQL is a SQL-based database for storing sequences, features, annotations,

etc. We use Accumulo instead.	

10 Hung, Che-Lun, and Yaw-Ling Lin. "Implementation of a parallel protein structure
alignment service on cloud." International journal of genomics 2013 (2013).	

● A web service that provides sequence alignments on demand using Hadoop
MapReduce in the back end. We expect MapReduce is a better solution for the

	

40	
	

use case of running alignments against an entire database, as opposed to a
selected subset of a database.	

11 Kepner, Jeremy et al. "D4M 2.0 schema: A general purpose high performance
schema for the Accumulo database." High Performance Extreme Computing
Conference (HPEC), 2013 IEEE 10 Sep. 2013: 1-6.	

● The D4M Schema inspired our database table schema. It is a generic schema
template that allows for high flexibility while maintaining decent performance.	

12 Michelle Magrane and UniProt Consortium "UniProt Knowledgebase: a hub of
integrated protein data" Oxford Journals. N.p., n.d. Web. 24 Nov. 2010.
<http://database.oxfordjournals.org/content/2011/bar009.full.pdf+html>.	

● Discusses prowess of UniProt KB as a powerful protein Markov Model database.
Also reveals how UniProt KB allows for taxonomic restriction of search and how
data is added to the database. UniProt KB is the database we will examine after
Genbank.	

13 Pruitt, Kim D., Tatiana Tatusova, and Donna R. Maglott. "NCBI Reference
Sequences (RefSeq): A Curated Non-redundant Sequence Database of Genomes,
Transcripts and Proteins." National Center for Biotechnology Information. U.S. National
Library of Medicine, 27 Nov. 2006. Web. 02 Dec. 2014.
<http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716718/>	

● The NCBI RefSeq database is a non-redundant database that we can use as a
possible road for future expansion.	

14 "BioBench: A benchmark suite of bioinformatics applications." K. Albayraktaroglu,
A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W. Tseng, and D. Yeung. Proc. 2005 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS
2005), pp. 2-9. Austin TX, March 2005	

● We intend to use similar benchmarking tests as BioBench.	

Conference and Journals of Interest for publishing results	

● IEEE Transactions on Parallel and Distributed Systems (TPDS).
http://www.computer.org/portal/web/tpds 	

● IEEE High Performance and Extreme Computing (HPEC) Conference.
http://www.ieee-hpec.org/ 	

● Supercomputing Conference (SC). http://www.supercomp.org/	

	

	

41	
	

 F. Example Data
	

gbpri1.fsa_aa -- FASTA file from NCBI GENBANK containing protein sequences
	
>gi|1809232|gb|AAB46355.1| coded for by human cDNA N49626 (NID:g1190792) [Homo sapiens]	
MFSSSFLDKKLYVSRGSASTSLPNETLSELETPGKYSLTPPNHWGHPHRYLQHL	
>gi|2078460|gb|AAB54048.1| Rod transducin (alpha-1 subunit) [Homo sapiens]	
MGAGASAEEKHSRELEKKLKEDAEKDARTVKLLLLGAGESGKSTIVKQMKIIHQDGYSLEECLEFIAIIY	
GNTLQSILAIVRAMTTLNIQYGDSARQDDARKLMHMADTIEEGTMPKEMSDIIQRLWKDSGIQACFERAS	
EYQLNDSAGYYLSDLERLVTPGYVPTEQDVLRSRVKTTGIIETQFSFKDLNFRMFDVGGQRSERKKWIHC	
FEGVTCIIFIAALSAYDMVLVEDDEVNRMHESLHLFNSICNHRYFATTSIVLFLNKKDVFFEKIKKAHLS	
ICFPDYDGPNTYEDAGNYIKVQFLELNMRRDVKEIYSHMTCATDTQNVKFVFDAVTDIIIKENLKDCGLF	
>gi|561733|gb|AAB63305.1| MHC class II DRA [Macaca mulatta]	
MAESGVPVLGFFIIAVLMSAQESWAIKEEHVIIQAEFYLNPDQSGEFMFDFDGDEIFHVDMAKKETVWRL	
EEFGRFASFEAQGALANIAVDKANLEIMTKRSNNTPITNVPPEVTVLTNSPVELGEPNVLICFIDKFSPP	
VVKVTWLKNGKPVTTGVSETVFLPREDHLFRKFHYLPFLPSTEDIYDCKVEHWCLDAPLLKHWEFDAPSP	
LPETTENVVCALGLIVGLVGIIVGTVFIIKGVRKSNAAERRGPL	

globins4.hmm -- example motif Hidden Markov Model file
	
HMMER3/b [3.0 | March 2010]	
NAME globins4	
LENG 149	
ALPH amino	
RF no	
CS no	
MAP yes	
DATE Sun Mar 28 09:50:46 2010	
NSEQ 4	
EFFN 0.964844	
CKSUM 2027839109	
STATS LOCAL MSV -9.9014 0.70957	
STATS LOCAL VITERBI -10.7224 0.70957	
STATS LOCAL FORWARD -4.1637 0.70957	
HMM A C D E F G H I K L M N P Q R S T V W Y	
 m->m m->i m->d i->m i->i d->m d->d	
 COMPO 2.36553 4.52577 2.96709 2.70473 3.20818 3.02239 3.41069 2.90041 2.55332 2.35210 3.67329 3.19812 3.45595 3.16091 3.07934 2.66722 2.85475
2.56965 4.55393 3.62921	
 2.68640 4.42247 2.77497 2.73145 3.46376 2.40504 3.72516 3.29302 2.67763 2.69377 4.24712 2.90369 2.73719 3.18168 2.89823 2.37879 2.77497 2.98431
4.58499 3.61525	
 0.57544 1.78073 1.31293 1.75577 0.18968 0.00000 *	
 1 1.70038 4.17733 3.76164 3.36686 3.72281 3.29583 4.27570 2.40482 3.29230 2.54324 3.63799 3.55099 3.93183 3.61602 3.56580 2.71897 2.84104 1.67328
5.32720 4.10031 9 - -	
 2.68618 4.42225 2.77519 2.73123 3.46354 2.40513 3.72494 3.29354 2.67741 2.69355 4.24690 2.90347 2.73739 3.18146 2.89801 2.37887 2.77519 2.98518
4.58477 3.61503	
 0.03156 3.86736 4.58970 0.61958 0.77255 0.34406 1.23405	
 2 2.62748 4.47174 3.31917 2.82619 3.63815 3.49607 2.75382 3.03401 2.75280 2.74783 3.65114 3.24714 2.62341 3.12082 3.11124 2.79244 2.89355 1.88003
5.06315 3.77128 10 - -	
 2.68618 4.42225 2.77519 2.73123 3.46354 2.40513 3.72494 3.29354 2.67741 2.69355 4.24690 2.90347 2.73739 3.18146 2.89801 2.37887 2.77519 2.98518
4.58477 3.61503	
 0.02321 4.17053 4.89288 0.61958 0.77255 0.48576 0.95510	

	

globins4.out -- Example scores for sequences against a motif HMM, followed by
alignments
	
Scores for complete sequences (score includes all domains):	
 --- full sequence --- --- best 1 domain --- -#dom-	
 E-value score bias E-value score bias exp N Sequence Description	
 ------- ------ ----- ------- ------ ----- ---- -- -------- -----------	
 6e-65 222.7 3.2 6.7e-65 222.6 2.2 1.0 1 sp|P02185|MYG_PHYCA Myoglobin OS=Physeter catodon GN=MB PE	
 3.1e-63 217.2 0.1 3.4e-63 217.0 0.0 1.0 1 sp|P02024|HBB_GORGO Hemoglobin subunit beta OS=Gorilla gor	
 4.5e-63 216.6 0.0 5e-63 216.5 0.0 1.0 1 sp|P68871|HBB_HUMAN Hemoglobin subunit beta OS=Homo sapien	

	

42	
	

…	
Domain annotation for each sequence (and alignments):	
>> sp|P02185|MYG_PHYCA Myoglobin OS=Physeter catodon GN=MB PE=1 SV=2	
 # score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc	
 --- ------ ----- --------- --------- ------- ------- ------- ------- ------- ------- ----	
 1 ! 222.6 2.2 1.4e-67 6.7e-65 2 149 .] 2 148 .. 1 148 [. 0.99	
	
 Alignments for each domain:	
 == domain 1 score: 222.6 bits; conditional E-value: 1.4e-67	
 globins4 2 vLseaektkvkavWakveadveesGadiLvrlfkstPatqefFekFkdLstedelkksadvkkHgkkvldAlsdalakldekleaklkdL 91	
 vLse+e++ v++vWakveadv+++G+diL+rlfks+P+t+e+F++Fk+L+te+e+k+s+d+kkHg++vl+Al+++l+k ++++ea+lk+L	
 sp|P02185|MYG_PHYCA 2 VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASEDLKKHGVTVLTALGAILKK-
KGHHEAELKPL 90	
 8***.99********* PP	
	
 globins4 92 selHakklkvdpkyfkllsevlvdvlaarlpkeftadvqaaleKllalvakllaskYk 149	
 +++Ha+k+k+++ky++++se++++vl++r+p++f+ad+q+a++K+l+l++k++a+kYk	
 sp|P02185|MYG_PHYCA 91 AQSHATKHKIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYK 148	
 ***7 PP	
	
>> sp|P02024|HBB_GORGO Hemoglobin subunit beta OS=Gorilla gorilla gorilla GN=HBB PE=1 SV=2	
 # score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc	
 --- ------ ----- --------- --------- ------- ------- ------- ------- ------- ------- ----	
 1 ! 217.0 0.0 7.4e-66 3.4e-63 1 149 [] 2 147 .] 2 147 .] 0.99	
	
 Alignments for each domain:	
 == domain 1 score: 217.0 bits; conditional E-value: 7.4e-66	
 globins4 1 vvLseaektkvkavWakveadveesGadiLvrlfkstPatqefFekFkdLstedelkksadvkkHgkkvldAlsdalakldekleaklkd 90	
 v+L+++ek++v+a+W+kv +v+e+G+++L rl++++P+tq+fFe+F+dLst+d+++++++vk+Hgkkvl+A+sd+la+ld +l++++++	
 sp|P02024|HBB_GORGO 2 VHLTPEEKSAVTALWGKV--
NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD-NLKGTFAT 88	
 69****************..***.******** PP	
	
 globins4 91 LselHakklkvdpkyfkllsevlvdvlaarlpkeftadvqaaleKllalvakllaskYk 149	
 LselH++kl+vdp++fkll++vlv+vla++++keft++vqaa++K++a va++la+kY+	
 sp|P02024|HBB_GORGO 89 LSELHCDKLHVDPENFKLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 147	
 **7 PP	

	

 G. Accumulo Database Table Formats
	

 The following snippets from our Accumulo database illustrate our database
schema. A solid schema is essential in order to answer queries at the front end flexibly
and efficiently.	

 The format of the schema is:	

row_id :column_qualifier [] value	

 Most entries have value “1,” as an indicator that a relationship exists between the
row and column. We use an empty column family. The “[]” indicates empty column
visibility, as we do not worry about security authorizations in our current work. See here
for a description of the Accumulo data format:
https://accumulo.apache.org/1.6/accumulo_user_manual.html#_data_model 	

	

43	
	

	

● Table Tseq	
	
 Tseq allows a user to lookup all the properties of a sequence by accession ID.
The properties are stored in the columns of an accession ID’s row.	

BAA22448.1 :Exons|89-406 [] 1
BAA22448.1 :codon_start|1 [] 1
BAA22448.1 :date|2006-12-02 [] 1
BAA22448.1 :db_xref|GI:2446889 [] 1
BAA22448.1 :def|Synechococcus elongatus PCC 6301 genes for ribosomal proteins, complete cds. [] 1
BAA22448.1 :molecule|DNA [] 1
BAA22448.1 :note|unnamed protein product [] 1
BAA22448.1 :organism|Synechococcus elongatus PCC 6301 [] 1
BAA22448.1 :strain|PCC 6301 [] 1
BAA22448.1 :taxon_id|269084 [] 1
BAA22448.1 :taxonomy|Bacteria; Cyanobacteria; Oscillatoriophycideae; Chroococcales; Synechococcus. []
1	
	
● Table TseqT	

	
 TseqT allows lookup of sequence accession IDs by property. The properties are
the row identifiers and the accession IDs are columns. This is the “transpose” of table
TseqT. 	

 One common operation is to find all the accession IDs that have a certain
property, e.g., all the accession IDs that have the property organism|Synechococcus
elongatus. Lookup by “start” of a property is also possible, as by finding all accession
IDs of sequences that have a property that starts with taxonomy|Bacteria;
Cyanobacteria.	

Exons|89-406 :BAA22448.1 [] 1
codon_start|1 :BAA22448.1 [] 1
date|2006-12-02 :BAA22448.1 [] 1
db_xref|GI:2446889 :BAA22448.1 [] 1
def|Synechococcus elongatus PCC 6301 genes for ribosomal proteins, complete cds. :BAA22448.1 [] 1
molecule|DNA :BAA22448.1 [] 1
note|unnamed protein product :BAA22448.1 [] 1
organism|Synechococcus elongatus PCC 6301 :BAA22448.1 [] 1
strain|PCC 6301 :BAA22448.1 [] 1
taxon_id|269084 :BAA22448.1 [] 1
taxonomy|Bacteria; Cyanobacteria; Oscillatoriophycideae; Chroococcales; Synechococcus. :BAA22448.1
[] 1	

	

44	
	

● Table TseqDegT
	

 This table lists the number of sequences that have a property. We store the
number as the value of the Accumulo entry. The table snippet below was constructed
from a small test dataset and so shows all 1s, but in our full database there are many
more entries. For example, the number of sequences from a DNA molecule is	

molecule|DNA :deg [] 20251058	

 We use degree tables to gauge how much computation and data traffic a query
requires.	

Exons|89-406 :deg [] 1
codon_start|1 :deg [] 1
date|2006-12-02 :deg [] 1
db_xref|GI:2446889 :deg [] 1
def|Synechococcus elongatus PCC 6301 genes for ribosomal proteins, complete cds. :deg [] 1
molecule|DNA :deg [] 1
note|unnamed protein product :deg [] 1
organism|Synechococcus elongatus PCC 6301 :deg [] 1
strain|PCC 6301 :deg [] 1
taxon_id|269084 :deg [] 1
taxonomy|Bacteria; Cyanobacteria; Oscillatoriophycideae; Chroococcales; Synechococcus. :deg [] 1	

	
● Table TseqFieldT	

	

 TseqFileldT is similar to TseqDegT, except that it counts all the sequences that
have some property of a given type. Again, the snippet below is from example data.
Here is a listing from our live database	

molecule :deg [] 22851661
Exons :deg [] 5
codon_start :deg [] 5
date :deg [] 5
db_xref :deg [] 5
def :deg [] 5
ec_number :deg [] 1
gene :deg [] 3
molecule :deg [] 5
note :deg [] 2
organism :deg [] 5
product :deg [] 3
strain :deg [] 5

	

45	
	

taxon_id :deg [] 5
taxonomy :deg [] 5	

	
● Table TseqRaw

	
 TseqRaw stores the actual sequence data for each accession ID in our system.	

BAA22448.1 :seq []
MLARISELTKIGTTIFIVAIDQVAEPNSWGSSQLVLLAKIAGALKAIPPNPVCTSRHRQAASVSPFRSAIVGTLLQ
LEAIKNLLTVSVDTIQQNGVLFIFVALLR
	
● Table TseqRawNumBases	

	

 TseqRawNumBases counts the number of bases (each letter is a base) in a
particular sequence, organized by accession ID. This is another way to estimate the
amount of computation a query requires.	

BAA22448.1 :num [] 105
	
● Table TseqInfo	

	
TseqInfo stores metadata on how many sequences we ingested into our database from each
database file, how long it took to process that file, how many property entries we ingested among
all the sequences in that file, and the total number of bases for that file.
	
gbbct1._aas :statNumBasePut [] 1.53868e+07
gbbct1._aas :statNumMetaPut [] 663812
gbbct1._aas :statNumSeqPut [] 53229
gbbct1._aas :statTimePut [] 655.389	
	

● Table Ttax	
Ttax allows a user to lookup all the properties of a taxonomic identifier. The properties are
stored in the columns of an accession ID’s row. Note that these identifiers (stored in the row)
correspond to the taxon_id property of a sequence, listed above in Tseq, TseqT and other
tables.	

1 :division|Unassigned [] 1421654426882 false 1
1 :rank|no rank [] 1421654426882 false 1
1 :scientific name|root [] 1421654426995 false 1
1 :synonym|all [] 1421654426995 false 1

	

46	
	

10 :division|Bacteria [] 1421654426882 false 1
10 :parent|135621 [] 1421654426882 false 1
10 :rank|genus [] 1421654426882 false 1
10 :scientific name|Cellvibrio [] 1421654426995 false 1
10 :synonym|"Cellvibrio" Winogradsky 1929 [] 1421654426995 false 1
10 :synonym|Cellvibrio (ex Winogradsky 1929) Blackall et al. 1986 em... TRUNCATED [] 1421654426995
false 1
11 :authority|"Cellvibrio gilvus" Hulcher and King 1958 [] 1421654426995 false 1
11 :division|Bacteria [] 1421654426882 false 1
11 :equivalent name|Cellvibrio gilvus [] 1421654426995 false 1
11 :parent|1707 [] 1421654426882 false 1
11 :rank|species [] 1421654426882 false 1
11 :scientific name|[Cellvibrio] gilvus [] 1421654426995 false 1
	

	

● Table TtaxT	

TtaxT performs a similar function to TseqT, allowing efficient lookup of the taxonomic IDs that
have a certain property. The taxonomic ID is the column qualifier.	

This table will enable “search” capabilities over species. For example, we may find all the
taxonomic identifiers that contain the name “bacteria” in either the genbank common name, the
equivalent name, a misspelling, or the scientific name. We may also traverse the taxonomic
hierarchy through the “parent” property. Part of the hierarchy is also indexed in table Tseq(T).	

authority|"Angiococcus disciformis" (Thaxter 1904) Jahn 1924 :38 [] 1421654426996 false 1
authority|"Angiococcus" Jahn 1924 :42 [] 1421654426996 false 1
authority|"Cellvibrio gilvus" Hulcher and King 1958 :11 [] 1421654426996 false 1
...
blast name|bacteria :2 [] 1421654426996 false 1
division|Bacteria :10 [] 1421654426883 false 1
division|Bacteria :11 [] 1421654426883 false 1
division|Bacteria :13 [] 1421654426883 false 1
...
equivalent name|Methyliphilus methylitrophus :17 [] 1421654426996 false 1
equivalent name|Methyliphilus methylotrophus :17 [] 1421654426996 false 1
equivalent name|Methylophilus methylitrophus :17 [] 1421654426996 false 1
genbank common name|eubacteria :2 [] 1421654426996 false 1
genbank common name|fruiting gliding bacteria :29 [] 1421654426996 false 1
...
misspelling|Shewanella putrifaciens :24 [] 1421654426996 false 1
parent|13 :14 [] 1421654426883 false 1

	

47	
	

parent|131567 :2 [] 1421654426883 false 1
parent|135621 :10 [] 1421654426883 false 1
parent|16 :17 [] 1421654426883 false 1
...
rank|family :39 [] 1421654426883 false 1
rank|family :49 [] 1421654426883 false 1
rank|genus :10 [] 1421654426883 false 1
rank|genus :13 [] 1421654426883 false 1
...
rank|no rank :1 [] 1421654426883 false 1
rank|order :29 [] 1421654426883 false 1
rank|species :11 [] 1421654426883 false 1
rank|species :14 [] 1421654426883 false 1
...
rank|superkingdom :2 [] 1421654426883 false 1
scientific name|Angiococcus disciformis :38 [] 1421654426996 false 1
scientific name|Archangium :47 [] 1421654426996 false 1
scientific name|Archangium gephyra :48 [] 1421654426996 false 1
scientific name|Azorhizobium :6 [] 1421654426996 false 1	

	

● Table TtaxDeg	

This stores the number of properties of each taxonomic ID.	

1 :deg [] 1421654426987 false 4
10 :deg [] 1421654426987 false 6
11 :deg [] 1421654426987 false 6
13 :deg [] 1421654426987 false 5
14 :deg [] 1421654426987 false 8
16 :deg [] 1421654426987 false 7
	

● Table TtaxDegT	

 This stores the number of taxonomic IDs that have a property. The most useful
portion is the “parent” property, as this effectively stores the number of children in the
taxonomic hierarchy of a given taxonomic ID.	

 To give perspective on the scope of our database, the following is from our live
database and shows how many taxonomic identifiers at the species level are stored:	

	

48	
	

rank|species :deg [] 944894	

authority|"Angiococcus disciformis" (Thaxter 1904) Jahn 1924 :deg [] 1421654426994 false 1
authority|"Angiococcus" Jahn 1924 :deg [] 1421654426994 false 1
authority|"Cellvibrio gilvus" Hulcher and King 1958 :deg [] 1421654426994 false 1
...
parent|32199 :deg [] 1421654426882 false 1
parent|335928 :deg [] 1421654426882 false 1
parent|39 :deg [] 1421654426882 false 4
parent|39643 :deg [] 1421654426882 false 1
parent|40 :deg [] 1421654426882 false 1
parent|42 :deg [] 1421654426882 false 2
parent|83461 :deg [] 1421654426882 false 1
rank|family :deg [] 1421654426882 false 3
rank|genus :deg [] 1421654426882 false 18
rank|no rank :deg [] 1421654426882 false 1
rank|order :deg [] 1421654426882 false 1
rank|species :deg [] 1421654426882 false 31
rank|superkingdom :deg [] 1421654426882 false 1
scientific name|Angiococcus disciformis :deg [] 1421654426994 false 1
scientific name|Archangium :deg [] 1421654426994 false 1
	

	

● Table TtaxFieldT	

 Similar to the use of TseqFieldT.	

authority :deg [] 1421654426988 false 66
blast name :deg [] 1421654426988 false 1
division :deg [] 1421654426868 false 55
equivalent name :deg [] 1421654426988 false 7
genbank common name :deg [] 1421654426988 false 2
genbank synonym :deg [] 1421654426988 false 1
in-part :deg [] 1421654426988 false 6
includes :deg [] 1421654426988 false 7
misspelling :deg [] 1421654426988 false 6
parent :deg [] 1421654426868 false 54
rank :deg [] 1421654426868 false 55
scientific name :deg [] 1421654426988 false 55
synonym :deg [] 1421654426988 false 59
type material :deg [] 1421654426988 false 101	

